Traduzir

sábado, 17 de maio de 2014

Funções de 1º grau...



Função de 1º grau

Zero e Equação do 1º Grau:

   Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a0, o número real x tal que  f(x) = 0.
   Temos:
   f(x) = 0        ax + b = 0        
   Vejamos alguns exemplos:
  1. Obtenção do zero da função f(x) = 2x - 5:
                                        f(x) = 0        2x - 5 = 0        
  2. Cálculo da raiz da função g(x) = 3x + 6:
                                        g(x) = 0        3x + 6 = 0        x = -2
       
  3. Cálculo da abcissa do ponto em que o gráfico de h(x) = -2x + 10 corta o eixo das abcissas:
    O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) = 0; então:
        h(x) = 0        -2+ 10 = 0        x = 5

Crescimento e decrescimento:

   Consideremos a função do 1º grau y = 3x - 1. Vamos atribuir valores cada vez maiores a x e observar o que ocorre com y:
 
     
x-3-2-10123
y-10-7-4-1258



      Notemos que, quando aumentos o valor de x, os correspondentes

    valores de y também aumentam. Dizemos, então que a 
    função y = 3x - 1 é crescente.



   Observamos novamente seu gráfico:

Regra geral:

a função do 1º grau f(x) = ax + b é crescente quando o coeficiente de x é positivo (a > 0);
a função do 1º grau f(x) = ax + b é decrescente quando o coeficiente de x é negativo (a < 0);
Justificativa:
  • para a > 0: se x1 < x2, então ax1 < ax2. Daí, ax1 + b < ax2 + b, de onde vem f(x1) < f(x2).
  • para a < 0: se x1 < x2, então ax1 > ax2. Daí, ax1 + b > ax2 + b, de onde vem f(x1) > f(x2).

Sinal
   Estudar o sinal de uma qualquer y = f(x) é determinar os valor de x para os quais y é positivo, os valores de x para os quais y é zero e os valores de x para os quais y é negativo.
    Consideremos  uma função afim y = f(x) = ax + b vamos estudar seu sinal. Já vimos que essa função se anula pra raiz . Há dois casos possíveis:
  1º) a > 0 (a função é crescente)
         y > 0       ax + b > 0         x > 
         y < 0      ax + b < 0         x < 
    Conclusão: y é positivo para valores de x maiores que a raiz; y é negativo para valores de x menores que a raiz
2º) a < 0 (a função é decrescente)
          y > 0   ax + b > 0            x < 
         y < 0   ax + b < 0        x > 

Conclusão: y é positivo para valores de x menores que a raiz; y é  negativo para valores de x maiores que a raiz.

Sem comentários:

Enviar um comentário